
Technical Report
CMU/SEI-96-TR-025
ESC-TR-96-025

Garriogls-Me'lon University

Sofuvsre Enolrteerinq Institute

Recommended Best Industrial Practice

for Software Architecture Evaluation

Gregory Abowd, Georgia Institute of Technology

Len Bass, SEI

Paul Clements, SEI

Rick Kazman, SEI

Linda Northrop, SEI

Amy Zaremski, SEI

January 13,1997

Aspioved tor BOBiie re.i©a8*|

vX

>&&)' AH,.
Xi:

W7Ö203 ÖS7
IMC QUALITY E5©E(mü f

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administration
of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the
Educational Amendments of 1972 and Section 504 of the Rehabilitation Acl of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213. telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Report
CMU/SEI-96-TR-025

ESC-TR-96-025
January 1997

Recommended Best Industrial Practice for Software Architecture Evaluation

Gregory Abowd, Georgia Institute of Technology

Len Bass, SEI

Paul Clements, SEI

Rick Kazman, SEI

Linda Northrop, SEI

Amy Zaremski, SEI

Product Line Systems Program

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, US AF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1997 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative
works.
Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
hap://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS direcüy: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
direcüy: Defense Technical Information Center / 8725 John J. Kingman Road / Suite 0944 / Ft. Belvoir, VA
22060-6218. Phone: (703) 767-8222 *or toll-free in the U.S. —1-800 225-3842).

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

Acknowledgments v
1 Introduction 1

1.1 SEI Workshops 2
1.2 About This Document 3

2 Costs and Benefits 5
2.1 Costs 5
2.2 Benefits 6

2.2.1 Financial 6
2.2.2 Increased Understanding and Documentation of the System 6
2.2.3 Detection of Problems with the Existing Architecture 7
2.2.4 Clarification and Prioritization of Requirements 7
2.2.5 Organizational Learning 8

3 Categorization of Evaluation Techniques 9
3.1 Questioning Techniques 9

3.1.1 Scenario 9
3.1.2 Questionnaire 10
3.1.3 Checklist 10
3.1.4 Summary 10

3.2 Measuring Techniques 11
3.2.1 Metrics 11
3.2.2 Simulations, Prototypes, and Experiments 11

3.3 Comparison of Categories of Evaluation Techniques 12
3.3.1 Generality 12
3.3.2 Level of Detail 12
3.3.3 Phase 13
3.3.4 What Is Evaluated 13

3.4 What Technique to Use 14

4 The Recommended Best Practice 15
4.1 Evaluation Preconditions 15

4.1.1 Understanding of the Evaluation Context 15
4.1.2 The Right People 16
4.1.3 Organizational Expectations and Support 18
4.1.4 Evaluation Preparation 19
4.1.5 Architecture Representation 21

4.2 Evaluation Activities 22
4.2.1 Recording And Prioritizing 22
4.2.2 Evaluating 22
4.2.3 Reviewing Requirements 24

CMU/SEI-96-TR-025 ^~~~~™ i

4.2.4 Reviewing Issues 24
4.2.5 Reporting Issues 25

4.3 Evaluation Output 25
4.3.1 Ranked Issues 25
4.3.2 Report 25
4.3.3 Scenario Set 25
4.3.4 Preliminary System Predictions 26
4.3.5 Enhanced Documentation 26

5 Recommendation Summary 27
5.1 Conduct a Formal Review with External Reviewers 27
5.2 Time the Evaluation to Best Advantage 27
5.3 Choose an Appropriate Evaluation Technique 28
5.4 Create an Evaluation Contract 28
5.5 Limit the Number of Qualities to Be Evaluated 28
5.6 Insist on a System Architect 29

References 31

Appendix: Workshop Questionnaire 33

CMU/SEI-96-TR-025

List of Tables

Table 3-1: Properties of the Evaluation Approaches 12

CMU/SEI-96-TR-025

iv CMU/SEI-96-TR-025

Acknowledgments
The authors of this report thank the workshop participants listed in the appendix and their
sponsoring organizations. We also thank Jennifer Bitters and Barbara Tomchik, assistants at
the SEI, who helped host the workshops.

CMU/SEI-96-TR-025

vi CMU/SEI-96-TR-025

Recommended Best Industrial Practice
for Software Architecture Evaluation

Abstract: Architectural decisions have a great impact on the consequent
quality of software systems. As a result, it is important to evaluate how a
software architecture meets its quality demands. Though much focus has been
placed on modeling and describing the software architecture as a design
artifact, we found that relatively little is known about the current experience with
software architecture evaluation.

This report details the results of two workshops on software architecture
evaluation, held at the Software Engineering Institute (SEI) on November 9-10,
1995 and May 9-10,1996. The purpose of the workshops was to determine the
state of industrial practice in the evaluation of software architectures with
respect to a set of desired quality attributes, and to uncover recommendations
for best practices. In this report, we summarize the findings of the two
workshops, define a set of dimensions to characterize various software
architecture evaluation techniques, and make concrete recommendations for
implementing architecture evaluation practices.

1 Introduction
Because of the importance of architectural decisions, it is fitting that they receive close scruti-
ny. Few will argue against the cost-effectiveness of quality evaluation as early as possible in
the software development life cycle. If problems are found early in the life cycle, they are trivial
to correct—a change to a requirement, or specification, or design is all that is necessary. Soft-
ware quality cannot be appended late; it must be inherent from the beginning, built-in by de-
sign. The definition of a software architecture is the earliest point in the life cycle of a system
where an artifact exists that can be checked to determine how well the system will meet its
requirements—both explicit and implicit. It is in an organization's best interest to evaluate (and
reject, if necessary) prospective design candidates during the design phase, before long-term
institutionalization occurs. Therefore, an effective technique to evaluate a candidate architec-
ture—before it becomes the accepted blueprint—is of great economic value.

Furthermore, when acquiring a large software system that will have a long lifetime within the
acquiring organization, it is important that the organization develop an understanding of the
underlying architecture of candidate systems. This understanding allows an assessment of the
suitability of the candidates with respect to qualities of importance, particularly with respect to
how the candidates will support the future needs of the organization.

On the other hand, it should be noted that an architecture cannot guarantee the functionality
or quality required of a system. Poor downstream design, implementation, testing, or manage-
ment decisions can always undermine an acceptable architectural framework. Decisions at all
stages of the life cycle—from high-level design to coding and maintenance—affect quality. A

CMU/SEI-96-TR-025 ~~ T

software architecture evaluation assesses the ability of the architecture to support the desired
qualities. Refinements of the architecture into implementation that preserve the qualities are
necessary for the final product to actually achieve those qualities.

Our primary recommendations are that an architecture evaluation be held as early as possible
in the life cycle of the project, and that the evaluation be conducted as a formal review. Ideally,
such a review is held early enough so that decisions that have been made can be revoked
without extensive cost, but late enough so that bindings to hardware have been made so that
performance characteristics of the system can be analyzed. This places the evaluation some-
where in the early phases of high-level system design.

There are a number of generic recommendations that exist for carrying out any formal review,
such as assembling the correct people, making wise use of their time, and so forth. Since our
goal is to provide a full description of an architecture evaluation, we will no doubt include with-
out distinction many activities and recommendations that make sense for any review.

Evaluation connotes measuring value using a quantitative scale. Given our current under-
standing, quantitative practices are rare at the architectural level, so the term evaluation is pre-
mature. We will use the word evaluation to mean a process by which we draw conclusions
about an architecture. A review refers to a gathering of individuals to conduct an evaluation.
Our long-term goal is software architecture evaluation in the true sense of the word.

1.1 SEI Workshops

All of the evidence in this report comes from a series of two workshops on industrial practice
of software architecture evaluation held over the past year at the SEI. The participants were
invited based upon our knowledge of their company's experience with and/or commitment to
architecture evaluation. Participants gave presentations on their industrial experience and pro-
vided reference materials to help us understand their techniques. Those with the most expe-
rience also completed a detailed questionnaire (included in the appendix) on specific aspects
of their industrial experience. Together we discussed the issues and consolidated our experi-
ence to form the backbone of this report.

The participants fell into three categories:

industrial participants in charge of defining and conducting architecture evaluations within
their company (we refer to these as "internal")

consultants from industry and academia who, as outside experts, conduct evaluations for
other companies

• academic/industrial observers, some having evaluation experience

CMU/SEI-96-TR-025

The first set of practitioners met at the SEI on November 9-10, 1995. The second set met at
the SEI on May 9-10,1996. The total set of participants included:

Gregory Abowd, Georgia Institute of Technology

Len Bass, SEI

Joe Batman, SEI

Paul Clements, SEI

Ron Crocker, Motorola

Stu Feldman, IBM T.J. Watson Research

David Garlan, Carnegie Mellon University

Christine Hofmeister, Siemens

Kalai Kalaichelvan, Nortel

Rick Kazman, SEI

Philippe Kruchten, Rational

Joe Maranzano, AT&T Bell Laboratories

Linda Northrop, SEI

Connie Smith, Performance Engineering Services

David Weisman, Lockheed Martin

The domains of systems reviewed by the participants include: transaction processing/custom-
er care, telecommunications, air traffic control, decision support systems, event management
systems, revision control systems, information management, and others.

1.2 About This Document

This report describes a recommended best practice for performing software architecture eval-
uation. It is a consequence of two workshops held at the SEI, the first on November 9-10,1995
and the second on May 9-10,1996. The report is organized into five major sections: Introduc-
tion, Costs and Benefits, Categorization of Evaluation Techniques, the Recommended Best
Practice, and Recommendation Summary. The two sections following this introduction lay out
first some economic and then some technical groundwork essential to understanding the rec-
ommendations that follow.

In Section 4, the recommended best architecture evaluation practice is described in terms of
the preconditions to, the activities during, and the output of the evaluation. Section 5, Recom-
mendation Summary, recaps the major recommendations and discusses the rationale behind
them. The appendix contains the workshop questionnaire.

CMU/SEI-96-TR-025

CMU/SEI-96-TR-025

2 Costs and Benefits
There are a number of motivations for performing an architecture evaluation, but there is an
associated cost in terms of time and committed resources. An organizational issue is to decide
whether the benefits are worth the cost. We start, therefore, by reporting what is known about
costs and then give the perceived benefits of an architecture evaluation.

2.1 Costs

Some of the workshop participants maintain records to help determine the cost of a full archi-
tecture evaluation. For example, AT&T, having performed approximately 300 full-scale archi-
tecture evaluations on projects requiring a minimum of 700 staff days, reported that the
average cost of an architecture evaluation review was, based upon estimates from individual
project managers, 70 staff days. In addition, two of the consultants who performed architecture
evaluations reported cost estimates. Rational Software Corporation has performed around 30
evaluations and charges an average cost of $50K for projects of at least 500 KLOC in size.
The SEI Software Architecture Analysis Method (SAAM) evaluators have performed 10 eval-
uations for projects ranging in size from 5-100 KLOC and report a cost of 14 days. Most par-
ticipants also noted that there are increased start-up costs for an organization beginning an
architecture review practice due to a lack of architectural maturity in the company.

Most of the organizations represented (AT&T, Siemens, Nortel, Motorola, and Lockheed Mar-
tin) have established corporate units responsible for defining and conducting architecture eval-
uations. One of the main reasons for this centralization is that each company is interested in
maximizing the amount of corporate reuse at the architectural level. All of these companies
reported that the individual start-up costs for such an organization were non-trivial.

We recommend that architecture evaluation teams not include members of the development
project. Instead, individuals are selected from within their company to serve on architecture
evaluation teams based on their past performance and demonstrated skills with large-scale
system organization and design. This membership issue surfaces two cost-related concerns.
First, there is the worry of reduced organization-wide development productivity because supe-
rior designers are removed from active involvement. This cost can be mitigated by making
membership on the architecture evaluation board non-permanent. The second concern stems
from this temporary engagement on the architectural evaluation team. Each new evaluator
needs to be trained in the evaluation techniques and gain experience in evaluation before be-
ing a productive member of the evaluation team. There is a cost associated with this learning
curve for architecture evaluators.

CMU/SEI-96-TR-025

2.2 Benefits

The benefits of an architectural evaluation can be categorized as follows.

2.2.1 Financial

At AT&T, each project manager reports perceived savings from an architecture evaluation. On
average, over the past eight years, projects receiving a full architecture evaluation have re-
ported a 10% reduction in project costs. Given the cost estimate of 70 staff days, this reported
10% cost reduction illustrates that on projects of 700 staff days or longer, the evaluation pays

for itself.

Other workshop attendees did not have strongly quantified data, but several consultants re-
ported that over 80% of their business was repeat business. Their customers recognized suf-
ficient value in architecture evaluation to be willing to pay for additional evaluations.

Workshop participants also reported several anecdotes of estimated cost savings for the cus-
tomers of their evaluations. One consultant reported that, as a result of an architecture evalu-
ation, a large company avoided a multimillion dollar purchase when the architecture of the
global information system they were procuring was, upon evaluation, not capable of providing
the desired system attributes necessary to support a product line. Another reported that early
analysis of an electronic funds transfer system showed a fifty billion dollar transfer capability
per night: half the desired capacity. An architecture evaluation of a retail merchandise system
revealed early that there would be peak order performance problems that no amount of hard-
ware could fix; a major business failure was prevented. In the architecture evaluation of a re-
vision control system, a number of severe limitations in achieving system portability and
modifiability were uncovered. A major redesign of the system was recommended.

It is also useful to point out cases where architecture reviews did not occur. One participant
described how a rewrite of a customer accounting system was estimated to take two years.
After seven years, the system had been re-implemented three times. Performance goals have
never been met, despite the fact that the latest version uses sixty times the CPU power of the
original prototype version. In a large engineering relational database system, performance
problems that were largely attributable to design decisions made integration testing impossi-
ble. The project was cancelled after twenty million dollars had been spent.

2.2.2 Increased Understanding and Documentation of the System

One of the benefits of any formal review is that it forces the reviewee to prepare for the review.
By giving the reviewees an indication of the focus of the architecture evaluation and the re-
quirement for a representation of the architecture before the review is held, the reviewees are
required to document the system's architecture. Many systems do not have a top-level archi-
tecture that is understandable to all of the developers. The architecture is either too brief or,
more commonly, too long, perhaps thousands of pages. Furthermore, there are often misun-

6 ~ CMU/SEI-96-TR-025

derstandings among developers about some of the assumptions for their components. The
process of preparing for the review will reveal many of these problems.

Furthermore, the architecture evaluation focuses on a few specific areas with specific ques-
tions to be answered. Answering these questions usually involves giving an explanation of the
design choices and their rationales. Having a documented design rationale is important later
in the life cycle so that the implications of modifications can be assessed. Capturing design
rationales after the fact is one of the more difficult tasks in software development. By capturing
the design rationale as presented in the architecture review (even by low-cost methods such
as videotaping), invaluable information is available for later use.

2.2.3 Detection of Problems with the Existing Architecture

The third benefit of an architecture evaluation is early detection of problems with the existing
architecture. The earlier in the life cycle that problems are detected, the cheaper it is to fix
them. The problems that can be found by an architectural-level inspection include unreason-
able (or expensive to meet) requirements, performance problems, and problems associated
with potential downstream modifications. For example, an architecture evaluation which exer-
cises scenarios of typical system activity can manifest rough performance specifications. Ex-
ercising system modification scenarios can reveal portability and extensibility problems that
will be especially critical if the architecture is to support a product line, rather than just a single
product. Architecture evaluation, therefore, provides early insight into product capabilities and

limitations.

2.2.4 Clarification and Prioritization of Requirements

The fourth significant benefit is validation of requirements. Discussion and examination of how
well an architecture meets requirements also opens requirements up for discussion. What re-
sults is a much clearer understanding of the requirements and, usually, a prioritization of the
requirements. Requirements creation, when performed in isolation from a high-level design,
usually results in specification of conflicting system properties. High performance, security,
fault-tolerance, and low cost are all easy to demand but difficult to achieve, and often impos-
sible to achieve simultaneously. Architecture evaluations uncover the conflicts and tradeoffs,
and provide a forum for their negotiated resolution.

One workshop participant reported reviewing a system whose performance requirements (a
seemingly innocuous three-minute update rate) would have necessitated the use of twenty
large-scale high-cost CPUs. The "requirement" turned out to have been ill-conceived; relaxing
it to four minutes produced an acceptable system at an acceptable cost.

CMU/SEI-96-TR-025

2.2.5 Organizational Learning

Organizations that practice architecture evaluation as a standard part of their development
process report, anecdotally, an improvement in the quality of the architectures that are re-
viewed. As development organizations learn to anticipate the kinds of questions that will be
asked, the kinds of issues that will be raised, and the kinds of documentation that will be re-
quired for evaluations, they naturally pre-position themselves to maximize their performance
on the reviews. Architecture evaluations not only result in better architectures after the fact,
but before the fact as well. Over time, an organization develops a culture that promotes good
architectural design.

In summary, architecture evaluations tend to increase quality, control cost, and decrease bud-
get risk. Architecture is the framework for all technical decisions and, as such, has a tremen-
dous impact on cost and quality of the product. An architecture review does not guarantee high
quality or low cost, but it points out areas of risk in a design. Other factors such as testing or
quality of documentation and coding will contribute to the eventual cost and quality of the sys-

tem.

Benefits other than the immediate ones of helping to facilitate the construction of the system
also accrue. Architectures are manifested in organizational entities (for example, work break-
down structures are based on system decompositions of functionality) but they also reflect ex-
isting organizational structures. If, for example, portions of a system are being developed by
subcontractors, then recognizing commonalities across the portions of the system being de-
veloped by the two different subcontractors is difficult. An architecture evaluation that has
maintenance as one of its focus areas will detect commonalities regardless of organizational
considerations.

CMU/SEI-96-TR-025

3 Categorization of Evaluation Techniques

Workshop participants described a variety of techniques used to perform an architecture eval-
uation. Each of the techniques has a different cost and can be used to elicit different informa-
tion. We found that there are two basic categories of these techniques: those that generate
qualitative questions to ask of an architecture and those that suggest quantitative measure-
ments to be made on an architecture. We found that questioning techniques can be applied to
evaluate an architecture for any given quality. In fact, it is consideration of the quality that
drives the development of questions (in the form of checklists or scenarios, as described be-
low). Questioning techniques, however, do not directly provide a means for answering those
questions. Measuring techniques, on the other hand, are used to answer specific questions.
In that sense, they address specific software qualities (for example, performance or scalability)
but are not as broadly applicable as questioning techniques.

Each of these techniques will be described briefly below, as background for its recommended

application.

3.1 Questioning Techniques
We identified three questioning techniques: scenarios, questionnaires, and checklists. These
techniques differ from each other in applicability, but they are all used to elicit discussion about
the architecture and increase understanding of the architecture's fitness with respect to its re-

quirements.

3.1.1 Scenario

People often want to analyze software architectures with respect to quality attributes ex-
pressed using words like maintainability, security, performance, reliability, and so forth. These
words provide convenient ways for describing and communicating a host of common, recur-
ring problems in software. However, most software quality attributes are too complex and
amorphous to be evaluated on a simple scale, in spite of our persistence in describing them
that way. Furthermore, quality attributes do not exist in isolation, but rather only have meaning
within a context. A system is modifiable (or not) with respect to certain classes of changes,
secure (or not) with respect to specific threats, usable (or not) with respect to specific user
classes, efficient (or not) with respect to its utilization of specific resources, and so forth. This
notion of context-based evaluation of quality attributes has led to the adoption of scenarios as
the descriptive means of specifying and evaluating quality attributes within a context. A sce-
nario is a specified sequence of steps involving the use or modification of the system. Scenar-
ios provide a means to characterize how well a particular architecture responds to the
demands placed on it by those scenarios. Scenarios test what we normally call modifiability
(by proposing a set of specific changes to be made to the system), security (by proposing a
specific set of threat actions), performance (by proposing a specific set of usage profiles that
tax resources), and so on.

CMU/SEI-96-TR-025

As an aid to creating and organizing scenarios, we appeal to the concept of stakeholders re-
lated to the system. Relevant stakeholders include: the person responsible for upgrading the
software—the end user; the person responsible for managing the data repositories used by
the system—the system administrator; the person responsible for modifying the runtime func-
tions of the system—the developer; the person responsible for approving new requirements
for the system, etc. The concept of stakeholders matches the difference between runtime qual-
ities and developmental qualities, that is, those qualities that are a function of the system's ex-
ecution (such as performance), and those that reflect operations performed offline in a
development environment (such as modifiability). Scenarios of the former variety will eventu-
ally be performed by stakeholders such as end user—the latter by developers or maintainers.

3.1.2 Questionnaire

A questionnaire is a list of general and relatively open questions that apply to all architectures.
Some questions might apply to the way the architecture was generated and documented (by
asking if there is a designated project architect or if a standard description language was
used). Other questions focus on the details of the architecture description itself (by asking if
all user interface aspects of the system are separated from functional aspects). The evaluation
team is looking for a favorable response and will probe a single question to a level of detail
that is necessary to satisfy their concern. An example of a questionnaire-based evaluation pro-
cess (that happens to go beyond architectural investigation) is the software risk evaluation pro-
cess [Joseph 94] developed by the Software Engineering Institute. The utility of a
questionnaire is related to the ease with which the domain of interest can be characterized and

circumscribed.

3.1.3 Checklist

"Just as a building inspector uses a checklist to ensure that a structure is in compliance with
the building codes, software architects use a checklist to help them keep a balanced focus on
all areas of the system." [AT&T 93] A checklist is a more detailed set of questions that is de-
veloped after much experience evaluating a common (usually domain-specific) set of systems.
Checklists tend to be much more focussed on particular qualities of the system than question-
naires are. For example, performance questions in a real-time information system will ask
whether the system is writing the same data multiple times to disk or whether consideration
has been given to handling peak as well as average loads.

3.1.4 Summary

There is a natural relationship between these three questioning techniques. Scenarios are in-
tended to be system-specific questions. Experience evaluating a family of related systems can
result in generalizing a set of commonly used scenarios, turning them into either domain-spe-
cific entries in a checklist or more general items in a questionnaire. Checklists and question-
naires reflect more mature evaluation practices. Scenarios can reflect less mature evaluation

10 CMU/SEI-96-TR-025

practices. Another difference is that scenarios, since they are system specific, and are devel-
oped as part of the evaluation process. Checklists and questionnaires are assumed to exist

before a project begins.

3.2 Measuring Techniques

Measuring techniques result in quantitative results. Rather than provide ways to generate the
questions that will be asked about an architecture, these techniques provide answers to ques-
tions an evaluation team might already have about particular qualities of an architecture. Since
the questions almost always precede the answers, we can see these measuring techniques
as more mature than the questioning techniques. In fact, we only saw evidence of measuring
techniques being used to answer questions of performance or modifiability.

3.2.1 Metrics

Metrics are quantitative interpretations placed on particular observable measurements on the
architecture, such as fan in/fan out of components. The most well-researched measuring tech-
niques provide answers on overall complexity that can suggest places of likely change (as
shown by Selby & Reimer [Selby 95]). With measuring techniques, the evaluation needs to fo-
cus not only on the results of the measurement/metric, but also on the assumptions under
which the technique was used. For example, a calculation of performance characteristics
makes assumptions about patterns of resource utilization. How valid are these assumptions?
Coupling and cohesion metrics make assumptions about the types of functionalities embodied
in the components being examined. How valid are these assumptions?

3.2.2 Simulations, Prototypes, and Experiments

Building a prototype or a simulation of the system may help to create and to clarify the archi-
tecture. A prototype whose components consist of functiontess stubs is a model of the archi-
tecture. Performance models are an example of a simulation. The creation of a detailed
simulation or prototype just for review purposes is typically expensive. On the other hand,
these artifacts often exist as a portion of the normal development process. In this case, using
these artifacts during a review or to answer questions that come up during the review becomes
a normal and natural procedure.

An existing simulation or prototype may be an answer to an issue raised by a questioning tech-
nique. For example, if the evaluation team asks "What evidence do you have to support this
assertion?," one valid answer would be the results of a simulation.

CMU/SEI-96-TR-025 11

3.3 Comparison of Categories of Evaluation Techniques

We can further distinguish architecture evaluation techniques across a number of different di-
mensions. Table 3-1 shows a summary of the classification of these evaluation techniques.

Review Method Generality Level of Detail Phase
What is

Evaluated

Questionnaire general coarse early
artifact
process

Checklist domain-specific varies middle
artifact
process

Scenarios system-specific medium middle artifact

Metrics
general or

domain-specific
fine middle artifact

Prototype,
Simulation,
Experiment

domain-specific varies early artifact

Table 3-1: Properties of the Evaluation Approaches

The dimensions are described below.

3.3.1 Generality

General-purpose techniques focus on general-purpose issues and can be applied to any ar-
chitecture. Domain-specific techniques focus on issues particular to a given domain. As we
already discussed, questionnaires are a general-purpose approach, whereas checklists are
domain specific. Scenarios, at least as they are initially defined, tend to be system specific but
may be either, depending on the particular issue a scenario is addressing. Metrics are mostly
general purpose, although there may be some domain-specific metrics, for example in the
telecommunications domain. Prototypes, simulations, and experimentation are primarily do-
main- specific, although there are some general-purpose simulation generation tools.

3.3.2 Level of Detail

Level of detail indicates how much information about the architecture is required to perform
the evaluation. Values here represent a continuum and usually determine when in the devel-
opment cycle the evaluation technique can be applied. Coarse-grained approaches can be ap-
plied early in the design process for they do not require much detailed information such as
component specification or connection protocols. Fine-grained approaches generally need
more detail and hence must be applied later, when more decisions have been bound.

12 CMU/SEI-96-TR-025

3.3.3 Phase

There are three phases of interest to architecture evaluation: early, middle, and post-deploy-
ment. The entry in the table lists the earliest that a particular approach can be employed. In
general, the approach should be applied as early as possible.

Early-phase evaluation occurs after initial high-level and high-priority architectural decisions
have been made. At this point, we can evaluate the preliminary decisions and detect poor pre-
liminary choices. An actual architecture does not yet exist, just the preliminary decisions do.

Middle-phase evaluation occurs after some elaboration of the architectural design. Elaboration
is an iterative process; the evaluation can occur at any point here. At this point, there should
be an actual architectural design in varying stages of completeness (depending on how much
has been elaborated). At this stage we can identify problems with the architectural design.

Post-deployment phase evaluation occurs after the system has been completely designed, im-
plemented, and deployed. At this stage, both the architecture and the system exist, so we can
answer additional questions about whether the architecture matches the implementation. If the
product has been in existence for a while, we can also check for architectural drift—movement
away from the original design. These are different kinds of issues than the ones we discuss in

this report.

3.3.4 What Is Evaluated

There are two different kinds of questions that could be answered in an evaluation. The first
has to do with the architecture as an artifact or product. Here the focus is on evaluating the
architecture—properties that should hold, or issues to look at, such as minimal connection be-
tween components or encapsulation. This is the most common subject of an evaluation. An-
other kind of evaluation looks at the role played by the architecture in the development
process. This explores issues of how the architecture is used in the product's life cycle, wheth-
er it is useful, and who has responsibility for it.

Questionnaires and checklists can evaluate both the artifact and the role, depending on what
kind of question is asked. Examples of questions that address the process at the early phase
include "Do you have an architect?" and "How will you go from here to develop the architec-
ture?" Examples of questions that address the process at a later stage include "Do people un-
derstand the architecture?" and "What happens if we split the development team?" Examples
of questions at the post-deployment stage include "Is the architecture adhered to when you
change the system?" and "Does the implementation match the architecture?"

Scenarios, metrics, and prototypes by their nature are geared toward evaluating the artifact
only. It might be possible to come up with scenarios that focus on the role, but that is not really
their intent.

CMU/SEI-96-TR-025 13

3.4 What Technique to Use

The recommended technique depends on the development process, the maturity of architec-
ture evaluation within an organization, and the particular qualities being examined during the

evaluation.

If during the development process, simulations, prototypes, or experiments have been devel-
oped, they are the recommended techniques to use to provide information during an architec-
tural review that is within their scope. That is, a prototype may have been developed to test
particular performance characteristics. The use of this prototype to answer questions con-
cerned with modifiability is likely inappropriate. Specifically, simulations and prototypes are

recommended to answer performance questions.

Questionnaires and checklists are evolved over time and so if an organization is just beginning
to perform architecture evaluations and does not have questionnaires and checklists in place,
scenarios are the technique of choice. Development of a collection of scenarios is an activity
performed during an evaluation, and so, after performing a collection of evaluations, an orga-
nization can build a database of scenarios and turn them into questionnaires and checklists.
Even if an organization has questionnaires and checklists already in place, scenarios are rec-
ommended to deal with issues not covered in the questionnaires or checklists, and can also
be used to grow the questionnaires and checklists for future evaluations.

That is, scenarios are recommended as a method of getting started with a new area of evalu-
ation, and later can be grown into questionnaires and checklists.

14 CMU/SEI-96-TR-025

4 The Recommended Best Practice

We have summarized the costs and benefits for architecture evaluation and categorized five
different evaluation techniques. Next, we recommend the best practices for preparing, execut-
ing, and reporting on an architecture evaluation.

4.1 Evaluation Preconditions
Preconditions are the set of necessary assets and conditions that must be in place before a
successful evaluation can proceed. Preconditions include an understanding of the evaluation
context, involvement of the right people, organizational expectations and support, evaluation
preparation, and an appropriate representation of the architecture being examined.

4.1.1 Understanding of the Evaluation Context

Planned or Unplanned

Architecture-level project evaluations usually occur in one of two modes. In the first, the eval-
uation is considered a normal part of the project's development cycle. The review is scheduled
well in advance, built in to the project's work plans and budget, and follow-up is expected. In
the second mode, the evaluation is unexpected and usually the result of a project in serious
trouble and taking extreme measures to try to salvage previous effort. These two kinds of eval-
uation are fundamentally different; they have different goals, different agendas, are subject to
different expectations, and produce different results.

The planned evaluation is ideally considered an asset to the project, at worst a good chance
for mid-course correction. The review can be perceived not as a challenge to the technical au-
thority of the project's members, but as a validation of the project's initial direction. Planned
evaluations are proactive.

The unplanned evaluation, however, is more of an ordeal for project members, consuming the
project resources and schedule from a project already struggling with both. It tends to be more
adversarial than constructive. It is used only when management perceives that a project has
a substantial possibility of failure and needs to make a mid-course correction. Unplanned eval-
uations are reactive.

Because this document is a recommendation of best practices, we will not deal with unplanned
reviews. It is the recommendation of this report that architecture evaluations be an integral part
of the development process, planned and scheduled in advance, along with follow-up activi-
ties. When architecture evaluations are performed as a planned part of the software life cycle,
unplanned evaluations should never be required.

CMU/SEI-96-TR-025 15

Discovery or Validation

Some practitioners recommend an early, lightweight "architecture discovery review," at a point
during development after requirements have been set but before architectural decisions have
become firm. In this context, the requirements have not yet been validated in the context of a
formal mapping to an architecture or design approach. This is the ideal time to challenge re-
quirements on the basis of their feasibility or cost of implementation.

Such a discovery review would be held in addition to (not in lieu of) the type of full architecture
evaluation that examines a set of architectural decisions against a presumably unbending set
of functional and quality requirements.

These two reviews attack different kinds of decisions and can analyze for different kinds of
qualities. The discovery review uncovers a delicate balance that must be respected. If no ar-
chitectural decisions have yet been bound, there can be nothing to discuss. If decisions have
been strongly bound by this stage, then some expense will be incurred by changing them. The
prime assumption of discovery reviews is that some decisions have been made, but that these
decisions are typically not strongly bound to an architecture and can be changed without great
expense. Discovery reviews are less costly, but since most architectural decisions have not
been evaluation-determined at the time of this review, the perceived benefits are less.

Purpose of the Evaluation

It is important that the scope of the evaluation be kept under control. An evaluation could in-
vestigate many things, including whether the project's intended functionality can be achieved
and whether all quality goals can be met. In order to focus the evaluation, we recommend that
a small number of explicit goals be enumerated. The number of goals upon which to focus
should be kept to a minimum, around three to five. An inability to define a small number of high-
priority goals for the evaluation is an indication that the expectations for the review (and per-
haps the system) may be unrealistic. These goals define the purpose of the evaluation and
should be made an explicit portion of the evaluation contract discussed in Section 4.1.3.

Size of System Being Evaluated

There is a cost associated with any review, and the benefits should exceed the cost. The type
of evaluation we are advocating here is suitablfor medium- and large-scale projects but may
not be cost-effective for small projects. Based on the costs of the evaluation discussed in Sec-
tion 2, we recommend an evaluation for projects that consume more than four person-years of
effort.

4.1.2 The Right People

There are two groups of people whose participation is essential to a successful evaluation.
Representatives from each of these groups must be available at some point during the archi-
tecture evaluation.

16 CMU/SEI-96-TR-025

Project Representatives

The project should be represented by the system architect, the designers for each major com-

ponent, and the system stakeholders.

It is imperative to secure the time of the project's architect, if available, or at least someone
who can speak authoritatively about the architecture and design. Although motivation for de-
sign decisions is important, this person (or these people) should be primarily able to commu-
nicate the facts of the architecture quickly and clearly.

For very large systems, the designers for each major component need to be involved to ensure
that the architect's notion of the system design is in fact reflected and manifested in the lower

levels of the design.

The project's stakeholders must be identified, so that their interests will be represented in the
evaluation. Stakeholders include developers, managers, customers, different types of users,
installers, maintainers, contract monitors, and subcontractors. If the system must interact with
other systems, the set of stakeholders must include representatives of the other systems as

we||—possibly even including the organization's competitors. Individuals should be assigned
who can speak for these roles. It is essential to identify the customers for the evaluation report
and to elicit their values and expectations.

Evaluation Team

As we have already indicated, software architecture evaluation teams ideally are separate en-
tities within a corporation. The evaluation team must be assembled in a way that addresses

the following:

• The team must be perceived by the development project as impartial, objective, and
respected. The team must be seen as being composed of people appropriate to carry out
the evaluation, so that the project personnel will not regard the evaluation as a waste of
time, and so that the team's conclusions will carry weight.

The team members should expect to spend at least 100% of their nominal work time on
the evaluation as it runs its course. Late-night planning sessions and off-the-record
breakfast meetings with project personnel are the norm.

• The team should include people highly fluent in architecture and architectural issues and
be led by someone with solid experience in designing and evaluating projects at the
architectural level.

• The team should include at least one system domain expert—someone who has built
systems in the area being evaluated.

• The team should include someone to handle logistics: scheduling meetings, reserving
conference rooms, handling travel arrangements, making copies of documentation,
distributing read-ahead material, ordering lunches, procuring supplies, and so forth.

CMU/SEI-96-TR-025 17

The team should include a librarian responsible for organizing and making available the doc-

umentation about the project.

The team should be located as close to the source of the artifacts it will be examining as
possible. Locality will simplify logistics and enhance communication with project
personnel.

• The team, ideally, should include an "apprentice" reviewer to propagate architecture
review capability, as well as provide for reviewer turnover to avoid burnout.

In addition, the team must have access to the following resources:

Applicable domain knowledge is crucial and must be available from consultants to the
team, if not resident on the team itself.

• Access to the design documents, any working prototypes, or even (on rare occasions) the
source code, if it exists.

• Knowledge of the evaluation criteria, such as might be represented by a performance
engineer, if not resident on the team itself.

Support staff will be needed to assist in review process logistics and report generation.

4.1.3 Organizational Expectations and Support

Critical to evaluation success is a clear, mutual understanding of the expectations of the orga-
nization sponsoring the review, as well as support for the review in terms of organizational re-

sources.

Contract

Senior managers need to set expectations for the review to both the evaluation team and the
project personnel. A mechanism for this is a contract that determines

who will be told what upon completion of the evaluation

what will be the evaluation criteria (and, by implication, what will not)

what and who will be made available to the evaluation team

what follow-up is expected on the part of the evaluation team and the project

expectations (for the project) of the maximum time the review is expected to take

The process of negotiating the contract may be as important as the contract itself. The eye-to-
eye communication necessary to forge a contract may be the largest factor in setting realistic
expectations.

It should be understood that analysis at the architectural level is not a definitive analysis. All
that can be determined at the architectural level is that it is feasible that the resulting system
will have the desired qualities. There are no guarantees: a poor implementation of a good de-
sign will likely perform poorly. Thus, an important part of expectation setting is making sure
that all review stakeholders understand the nature of the results.

18 CMU/SEI-96-TR-025

Supporting Culture

A clear understanding of the supporting culture within the organization is essential. How in-
grained does the organization make architecture evaluations? In particular, the following ques-
tions should be answered:

Is the evaluation part of the organization's standard project life cycle?

• Is it considered career-enhancing to serve on an evaluation team?

Does the organization recognize a standing capability to perform an architecture
evaluation as a core competency that is worth investing in? Is the organization willing to
invest the necessary resources such as the long-term diversion of one or more valuable
architects from development projects to cultivate evaluation capability?

• Is there a standing evaluation organization? Although evaluators may rotate on and off
the evaluation team, there are tangible benefits to keeping a core evaluation team. They
include

- Working relationships are established and maintained.

- Experience can be transferred from one evaluation to the next, thus building up
a corporate knowledge base about techniques, criteria, methods, and
approaches.

- The normal inertial start-up time of a team with members who are unfamiliar
with each other can be avoided.

4.1.4 Evaluation Preparation

Certain materials must be prepared to permit a successful architecture evaluation.

Agenda or Goals

An agenda is needed for focus. The agenda should be detailed, but flexible. Often, information
elicited during a review will launch an area of investigation not previously considered. If the
architecture evaluation does not take the form of a review meeting (for example, the evaluation
could be a report which an independent team prepares), the goals for the evaluation, as well
as the evaluation criteria, must be spelled out clearly. For example, rather than saying that "our
system should be integrable," a criterion should state a more specific goal, such as "our sys-
tem should integrate with system X with no more than 10 person-days of effort."

Read-Ahead Materials for Project Personnel

Read-ahead material that offers some guidance for review preparation should be provided by
the evaluation team to project personnel. Ideally, this is a checklist of questions that the re-
viewers will ask.

If questionnaires or checklists are going to be used during the evaluation, they should be pre-
sented to the development group prior to the review. In fact, if these are organization-wide ar-
tifacts, they should be presented to the development group when the project is initiated.

CMU/SEI-96-TR-025 19

Ensuring that the development group has the questions prior to the review will enable them to
prepare answers and make adequate preparations; otherwise, review time must be spent pre-
paring the responses. It may also have the long-term effect that the development groups will
steer their designs to perform well on the evaluation—which, as long as the evaluation ade-
quately addresses the issues important to the organization, is the whole point.

Scenarios are system-specific and should be created to reflect all of the stakeholders' con-
cerns. This requires input from the various stakeholders. Prior to the review, the evaluation
team should iterate with the various stakeholders and develop a collection of scenarios on
which the evaluation will be based.

Read-Ahead Materials for Evaluation Team

The evaluation team needs access to materials that describe the architecture and discuss the
rationale behind architectural decisions. Expectations should be set about the level of detail of
the material: 50 pages would be preferable to 500 or 1. Ideally this material will address the
preestablished checklist of questions that the reviewers will ask. This is important, because it
not only prepares the development team to answer these questions clearly, but it can motivate
them to address these issues in the architecture. That is, the knowledge that such questions
will be asked during an evaluation can positively affect the architecture, by forcing it to explic-
itly address these questions from the earliest stages of design.

This assumes that the architecture and the requirements are in a concrete enough form to be
unambiguously documented and that they have been. If this is not the case, elicitation of this
information will be the first order of business in the evaluation itself.

In organizations in which this evaluation process is part of the culture, it is far less likely to be
the case that the architecture and requirements have not been adequately documented by the
time the evaluation begins. In organizations without standard representations for requirements
and architectures, the evaluation team may distribute templates for desired documents that il-
lustrate to project personnel the kind of information required and approved forms for conveying
it.

Ranked Requirements

We have already stressed the importance of scoping the evaluation. One concrete way to do
this is to rank quality and function requirements of the system before the evaluation begins.
Requirements frequently are in conflict and this prioritization will help to resolve those conflicts
when they arise. Industrial experience suggests that three to five is a reasonable maximum
number of quality attributes to try to accommodate. Such a ranking of requirements serves the
project by preventing the architecture from being muddied by the lobbying from representa-
tives of a large number of conflicting quality attributes. If more desired quality attributes are
expressed, they should be ranked as "above-the-line" or "below-the-line." Attributes that are

20 CMU/SEI-96-TR-025

"above-the-line" must be addressed by the architecture. The other attributes, while desirable,
may be sacrificed due to deadlines, budgets, or increased software complexity.

4.1.5 Architecture Representation

We have been assuming up to this point that some description of the architecture is available
before the evaluation. Over time, the culture of an organization that favors architecture will en-
sure this. But initially, it will likely be the case that no such documentation exists. In such cases,
the elicitation of the architectural description becomes a part of the evaluation process. Most
consultants assume this mode of operation.

It was clear from our workshops that no standard architecture representations (beyond box-
and-line diagrams) have been used in formal architecture evaluations. Nor is it likely that such
a representation language will emerge very soon. Most of our evidence for this comes from
AT&T where they have been doing these evaluations for eight years without a standard de-
scription language. Though Rational Software Corporation supports several object-oriented
architecture representations, the architectural descriptions are done by external consultants
and not the project teams [Kruchten 95].

Whereas no formal architectural representation language has emerged, we did notice two
kinds of architectural descriptions that are used: criteria-driven and representation-driven, de-
scribed below.

Criteria-Driven Architecture

For some reviews, the representation of the architecture is not a critical issue as long as the
architecture's "fitness to purpose" can be determined. In this case, the architectural informa-
tion provided for the evaluation is dependent upon the specific review criteria, often expressed
by a set of scenarios or the high priority questions in a questionnaire or checklist. Declaring a
specific quality as important (for example, security) will result in certain aspects of the system
being revealed in the architecture and others hidden. A specific set of scenarios will determine,
for instance, the granularity at which a set of architectural components and interconnections
should be expressed. Change the scenarios and the architecture description is also likely to
change.

Representation-Driven Architecture

If there is a standard representation language, such as Krutchen's "4+1" approach [Kruchten
95], or Software Architecture Analysis Method's simplistic data/control flow notation [Kazman
96], the information provided by the architecture description is dictated by the notation. Deter-
mining whether the description is complete is usually left to the evaluation team. Over time
however, questions asked of the architecture will tend to be ones that can be answered by the
representation. An organization needs to guard against having the representation drive the
evaluation criteria.

CMU/SEI-96-TR-025 2A

4.2 Evaluation Activities

During an evaluation, there are activities to evaluate the system and activities to record and pri-
oritize the results. The execution of these activities will depend upon the precise evaluation

technique employed (see Section 3).

4.2.1 Recording And Prioritizing

During the evaluation, the evaluation team is attempting to highlight critical issues that are
raised in support of or (more importantly) against the architecture. Each issue raised during
the review is documented. For example, these could be written on index cards and pinned to
a board, or stored in a widely accessible location, such as a corporate database. At convenient
points during the evaluation, the participants' comments on critical issues are organized by
theme. The evaluation team then rates the themes as project-threatening, major, or minor.
Thus, at the conclusion of the review, there is a prioritized list of issues that can be reported
to higher management and used to determine follow-up activities.

4.2.2 Evaluating

There are many qualities that can be the subject of an evaluation. As one of the preconditions
of the evaluation, the primary qualities to examine have been agreed upon. The most common
ones to come up in the workshop were cost, functionality, performance, and modifiability. We

address these in turn below.

For Cost

Every architecture evaluation should consider the cost consequences of the proposed design.
There are a variety of cost models that can be used to estimate cost and most are organiza-
tion-dependent. The goal is not to come to a precise determination of projected cost during an
architectural evaluation, but to see if there are any features in the architecture that are sus-
pected to be sources of undue risk and, potentially, unbound cost.

For Functionality

Sometimes it is unclear where in the architecture particular functionality is to be executed or
how the various aspects of the functionality are distributed across the components of the ar-
chitecture. The evaluation team should understand the essential functions of the system and
should look to see how that function is unambiguously defined in the architecture representa-
tion or described succinctly by the architect. A response to the question, "How is X done?" that
takes the form, "X could be done either here or there," indicates a potential problem that should
be recorded as an issue.

22 CMU/SEI-96-TR-025

Distributing functionality across several components is not an issue of concern for functional-
ity, although it could be an issue for modifiability. Other functionality-related issues that are im-

portant to examine include

• making sure there are written requirements in all key areas

checking that the functionality of the architecture system is complete with respect to these
functional requirements

• checking that the system acceptance criteria exist

For Performance

To evaluate performance, usually in terms of resource utilization, several pieces of information
are required [Smith 94]. These include

• work load information, which for the scenario under investigation consists of the number
of concurrent users, request arrival rates, and performance goals

• a software specification in performance terms, which consists of execution paths and
programs, components to be executed, the probability of execution of each component,
the number of repetitions of each software component, and the protocol for contention
resolution used by the software component

• environmental information, where binding decisions have been made. This information
consists of system characteristics such as configuration and device service rates,
overhead information for "lower level" services, and scheduling policies

Resource utilization can be derived from the three types of information given above; it consists
of CPU usage (or number of instructions executed per unit time), input/output activity, number
of database calls, amount of communication and other device usage, amount of service rou-
tine usage, and memory usage. This resource usage is then compared to the resource budget
for the system to determine (as a rough estimate) whether a performance issue exists.

For Modifiability

Modifiability questions are best addressed via scenario-based techniques. Modifiability evalu-
ation depends both on individual scenario evaluations and on the cumulative effect of all of the
scenarios.

Effects of Individual Modifications

Each modification scenario is reviewed from the point of view of the modification's difficulty.
This difficulty depends on how many different components need to be modified and how diffi-
cult the modification of each component will be. The technique to determine the difficulty is
similar to the technique used for tracking requirements. That is, the developers explain how
the modification is to be performed and what the difficulties will be. Indications of problem ar-
eas should be recorded.

CMU/SEI-96-TR-025 23

Effects of Overlapping Modifications

Modifications to an architecture may interact with each other. That is, if one component must
be changed to support two unrelated modifications, those modifications are more likely to be
a source of problems (that is, a source of increased complexity) than two similar modifications
performed on distinct components. Thus, the components affected by multiple modifications
need to be examined in an attempt to estimate the cumulative complexity of these changes.
One simple estimation technique for this is to add together the difficulty of each individual mod-
ification. This gives a first-order estimate in line with the accuracy of architectural estimates in

general.

4.2.3 Reviewing Requirements

Each serious issue that is raised during the evaluation needs to be examined both from the
point of view of modifying the architecture and from the point of view of modifying the require-
ments) that caused the issue to be raised. For example, if there is a performance issue, it can
be resolved by either increasing the performance of the system in some manner or reexamin-
ing the performance requirement. Sometimes requirements are set without careful examina-
tion of the system context, and the specific requirement that is driving an issue should be
revisited. There also may be a tendency to "gold-plate" a system by requiring functionality and
performance levels that aren't really needed. Sometimes this is justified by a business case
but other times this should be resisted. An architecture evaluation is an early opportunity to

ferret out nonessential or conflicting requirements.

4.2.4 Reviewing Issues

All of the issues that were raised during the review, as well as their ongoing ranking, should
be discussed in feedback made available to the development unit. In addition, there should be
a check for the following early warning signs:

The architecture is forced to match the current organization.

Top-level architecture components number more than 25.

One requirement drives the rest of the design.

The architecture depends upon alternatives in the operating system.

Proprietary components are being used when standard components would do.

The component definition comes from the hardware division.

There is too much complexity (e.g., two databases, two start-up routines, two error-
locking procedures).

The design is exception-driven; the emphasis is on the extensibility and not core
commonalities.

The development unit is unable to identify an architect for the system.

Yi, CMU/SEI-96-TR-025

4.2.5 Reporting Issues

The final review activity is to create and present a report in which all of the issues, along with
supporting data surfaced during the review, are described. The report should be circulated in
draft form to all of the review participants to catch and correct any misconceptions and biases
and to correlate elements before the report is finalized.

4.3 Evaluation Output

The output of an architecture evaluation should minimally include a report that describes a set
of ranked issues (project threatening, major, and minor) determined during the evaluation.
Other output that is created by virtue of the evaluation process includes the set of scenarios
used to evaluate the architecture, preliminary system predications, an identification of poten-
tially reusable components, and enhanced system documentation.

4.3.1 Ranked Issues

The categorized and ranked issues recorded during the evaluation activities are documented
formally, along with the data supporting the issue identification. Remember that the evaluation
team must determine whether each issue is project threatening (requiring immediate attention
before the project can proceed), major (important issue with the architecture that will ultimately
have to be corrected in later versions of the system) or minor (not necessary to correct, but
advisable for long-term success).

4.3.2 Report

A formal report is delivered to the party or parties sponsoring the evaluation, as well as to the
review participants. The report can also contain architectural descriptions and results of indi-
vidual analyses if they are particularly illuminating or produced as a result of the evaluation
and not located elsewhere in the system documentation. The report is usually presented to the
project manager or review-sponsoring individual.

4.3.3 Scenario Set

The set of scenarios that was used to exercise the architecture during the analysis becomes
part of the system configuration and can be used to analyze an improved system or a related
system, as well as to form the basis of eventual test cases. As already indicated, scenarios
developed for common systems will, over time, be used to formulate more generalized ques-
tionnaires and checklists.

CMU/SEI-96-TR-025 25

4.3.4 Preliminary System Predictions

Depending upon the criteria that drive the evaluation, certain predictions about the eventual
system will emerge. If performance was a key architecture evaluation criteria, it is likely that,
as a result of the evaluation, some rough worst-case/best-case performance predictions are
available. If system modification was a key criteria, preliminary predictions of the kinds of mod-
ifications the system can support will surface. Among these predictions can likely be the set of
potentially reusable design structures that could be shared by multiple similar systems.

4.3.5 Enhanced Documentation

The evaluation will precipitate the development of architecture representations, clarified re-
quirements, and system scenarios as described earlier. Having an established architecture
evaluation process will push an organization to standardize its representations of this informa-

tion.

The aggregated output from multiple evaluations leads to courses, training, and improvements
to the system development and architecture evaluation processes.

Outputs are delivered as specified in the contract although we recommend delivering the out-
put to the project that was evaluated. The organization will also wish to keep scenarios and
architectures from the evaluation as input to an improvement cycle for the evaluation process.

Costs and benefits of the evaluation should be collected. Estimates of the benefits are best
collected from the manager of the development.

26 CMU/SEI-96-TR-025

5 Recommendation Summary
The main recommendations for architecture evaluations are summarized below.

5.1 Conduct a Formal Review with External Reviewers

The major decision that drives many of the recommendations in this report is to hold an archi-
tecture evaluation as a formal review with external reviewers.

We recommend the formal and scheduled review because it provides a focus for an architec-
tural evaluation. A review that is included in the schedule and that is known about far in ad-
vance by the developers causes the developers to produce particular artifacts such as an
explicit architectural representation. Such artifacts are part of the best development practices,
but are not always produced in practice. The recommendation for a review assumes that hav-
ing an explicit system architecture is a key element to a successful development. The alterna-
tive is to view architectural evaluation as a portion of the normal development process. This
isn't precluded by the review recommendation, in fact it is encouraged, but having a review
provides a milestone and a schedule for the evaluation.

External reviewers are recommended for several reasons. They provide an independent per-
spective uncolored by pride of authorship. They provide a mechanism for importing architec-
tural expertise. An external evaluation team provides a mechanism for developing an
organization's architectural expertise and provides management with an additional verification
mechanism.

5.2 Time the Evaluation to Best Advantage

The recommendation is to hold the evaluation after requirements have been established and
there is a proposed architecture to review. An architecture evaluation cannot be held prior to
the existence of a proposed architecture. As described earlier, AT&T has a type of review
called an "architecture discovery review" that is really a checking of the reasonableness of the
requirements prior to an architectural review, but this type of review answers different ques-
tions. If performance is going to be a consideration during the evaluation (a common occur-
rence), there must be a provisional binding to hardware so that performance questions can be
answered.

As time passes in any development effort, decisions are made about the system under con-
struction. With every decision, modifications to the architecture become more constrained
and, hence, more expensive. Performing the architecture evaluation as soon as possible re-
duces the number of constraints on the outcome of the evaluation.

CMU/SEI-96-TR-025 27

5.3 Choose an Appropriate Evaluation Technique

In Section 3, we enumerated five different evaluation techniques, distinguishing between
questioning and measuring techniques. Scenarios are beginning to emerge as a universally
recommended technique for organizations beginning to adopt architecture evaluation practic-
es. The other questioning techniques are derived from scenarios as an organization's evalu-

ation practices mature.

Prototyping tends to be an expensive technique and is usually inappropriate just for the pur-
poses of a review. Prototyping is a popular technique in requirements elicitation, but those pro-
totypes usually do not bear any resemblance to the final system and so their architecture is

not subject to this evaluation.

Simulation at a medium or coarse grain is the recommended technique for performance, again
because of expense. Because of the existence of performance models and simulation sys-
tems, developing and analyzing a simulation is not an expensive undertaking.

Metrics may be useful to help understand the modifiability of the proposed design but metrics
make assumptions about the types of modifications that are going to be performed and these
assumptions and their relevance to the system under review must be understood. In general,
the assumptions that underlie metrics are not enumerated explicitly, and so we did not empha-
size them as an evaluation technique.

5.4 Create an Evaluation Contract

Since we recommend that the evaluation be done by an external review team, it is important
that both sides understand what will and will not be accomplished by the review. A formal con-
tract is merely a mechanism for ensuring that there is mutual understanding of the review's

scope.

5.5 Limit the Number of Qualities to Be Evaluated

All reviews end up covering a great deal of territory and end up discussing management is-
sues, such as cost, schedule, and resource allocation, in addition to purely technical issues.
By focusing on a limited number of qualities, agreed to in advance, the evaluation team can
be sure that the development organization has its priorities in order and that all parties under-
stand those priorities. When issues arise that are out of scope, since the qualities to be inves-
tigated are explicit and have been publicized, it is easy to bring the review back on track.
Without some type of restriction as to scope, it is possible for the review to wander and not
perform the task for which it was designed.

28 CMU/SEI-96-TR-025

5.6 Insist on a System Architect

One of the imperatives for a successful development effort is that there is one person who has
intellectual understanding of the total system (not necessarily in every detail). Fred Brooks

writes:
/ am more convinced than ever. Conceptual integrity is central to product qual-
ity. Having a system architect is the most important single step toward concep-
tual integrity... After teaching a software engineering laboratory more than 20
times, I came to insist that student teams as small as four people choose a
manager, and a separate architect [Brooks 95].

The lack of an architect is an indication that the development effort has problems, and drives
the recommendation that the system architect be available for the review.

Finally, there is a distinction between an architecture evaluation as an assessment of an ar-
chitecture-based development process and the formal review we recommend. This distinction
is made explicit in the questioning process for architecture reviews at Siemens. The evaluation
we describe determines whether the given technical solutions are good. Starting from first prin-
ciples, this evaluation will ask questions to determine what the architecture should be and
whether the steps used in determining the architecture were performed correctly. In contrast,
an assessment looks to see whether particular issues have been addressed. An assessment
seeks only to gain confidence that important issues were reasonably considered by the design
team. An assessment can be used as a filter to determine whether or not to do a formal review.

CMU/SEI-96-TR-025 29

30 CMU/SEI-96-TR-025

References

[AT&T 93] AT&T. "Best Current Practices: Software Architecture Validation."
Internal report. Copyright 1991,1993, AT&T.

[Boloix 95] Boloix, Germinal & Robillard, Pierre N. "A Software System Evalu-
ation Framework." Computer 28,12 (December 1995): 17-26.

[Brooks 95] Brooks, F. P. Jr. The Mythical Man-Month: Essays in Software En-
gineering (20th Anniversary Edition). Reading, Ma.: Addison-Wes-
ley, 1995.

[Henry 81] Henry, S. & Kafura, D. "Software Structure Metrics Based on Infor-
mation Flow." IEEE Transactions on Software Engineering SE-7, 5
(September 1981): 510-518.

[Joseph 94] Joseph, Sujoe & Sisti, Frank. Software Risk Evaluation Method, Ver-
sion 1.0. (CMU/SEI-94-TR-19, ADA290697). Pittsburgh, Pa.: Soft-
ware Engineering Institute, Carnegie Mellon University, 1994.

[Kazman 94] Kazman, R.; Bass, L; Abowd, G.; & Webb, M. "SAAM: A Method for
Analyzing the Properties Software Architectures." Proceedings of
ICSE 16, Sorrento, Italy. (May 1994): 81-90.

[Kazman 96] Kazman, R.; Abowd, G.; Bass, L. & Clements, P.; "Scenario-Based
Analysis of Software Architecture." IEEE Software 13,6 (November
1996): 47-55.

[Kruchten 95] Kruchten, P. B. "The 4+1 View Model of Architecture." IEEE Soft-
ware 12, 6 (November 1995): 42-50.

[Selby 95] Selby, Richard W. & Reimer, Ronald M. "Interconnectivity Analysis
for Large Software Systems." Proceedings of the California Soft-
ware Symposium. California. (March 1995): 3-17.

CMU/SEI-96-TR-025 31

[Smith 94] Smith, C, "Performance Engineering," 794-810. Encyclopedia of
Software Engineering, Vol. 2. New York, NY: Wiley, 1994.

32 CMU/SEI-96-TR-025

Appendix: Workshop Questionnaire

Software Architecture Evaluation

Organization
Presenter
Any Special Name for Evaluation Approach

1. Overall Context and Motivation for Evaluation
1.1. Why is evaluation done?

List technical rationale as well as any internal or external motivators.
1.2. What are the anticipated benefits of the architecture evaluation?
1.3. Are these benefits quantified?

If so, how?
1.4. Who are the customers for the evaluation?
1.5. Other comments on context and motivation.

2. Preconditions (what is necessary for an evaluation to take place)
2.1. What are the evaluation criteria?
2.2. How are the evaluation criteria expressed, chosen, defined, and represented?

2.2.1. Who derives the evaluation criteria?
2.3. What architecture representations (language, model, etc. including semantics)

are used for the evaluation purposes?
2.4. What are the personnel requirements?

2.4.1. How many evaluators are needed?
2.4.2. Are the evaluators a special team or part of a development team?
2.4.3. List any training needed to perform and/or use the results of the eval-

tions.
2.5. Are there any system requirements such as specific purpose, expected life span,

operating environment?
2.6. Describe the necessary corporate support such as resource allocation, company

policy, organizational infrastructure.
2.7. When in the life cycle is the evaluation performed?

2.7.1. When is the earliest it can be performed?
2.7.2. When is the latest it can be performed?

2.8. Other preconditions.
3. Evaluation Activities

3.1. Describe the methodology, particular techniques, and defined processes that are
part of your evaluation approach.

3.2. Describe any tools that are used in the evaluation. Indicate if they are standard
tools or were specially constructed in-house.

3.2.1. Are tools necessary for your approach?
3.3. Is the evaluation approach tailorable to either less or more thorough evaluations?
3.4. Other comments on evaluation activities.

CMU/SEI-96-TR-025 33

4. Evaluation Outcomes (Postconditions)
4.1. What is the output of the evaluation?
4.2. How is the output validated?
4.3. Is the output quantified?

If so, state how.
4.4. How is the output communicated?
4.5. Who uses the evaluation results?
4.6. What is the follow-up on evaluation results?
4.7. How is the output fed back into the development or acquisition process?
4.8. How often is the evaluation performed on a given project?
4.9. Other postconditions.

5. Experience
5.1. Where has the evaluation approach been used?
5.2. Which specific domains?
5.3. Which specific system types?
5.4. For what size systems?
5.5. How many projects have used the evaluation approach?
5.6. Is the same evaluation approach used for every project?
5.7. Has the evaluation approach been improved over time?

Describe any process for continuous improvement of the approach.
5.8. What have you been able to reuse in successive evaluations (for example, sce-

narios, report forms, people)?
5.9. What has been the added cost of the evaluation approach to each system?
5.10. Have you weighed costs versus benefits?

If so, indicate the results.
5.11. Describe any changes in your software development (or acquisition) process

that have resulted from the evaluation activities?
5.12. List any other tangential benefits from the evaluation activities (for example, cor-

porate history, promotions, etc.).
5.13. List the factors that you consider critical to the success of the evaluation activi-

ties.
5.14. Other comments on experience with the approach.

6. Other
Please add any additional comments that are important to the understanding
and analysis of the evaluation approach.

34 CMU/SEI-96-TR-025

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified
lb. RESTRICTIVE MARKINGS

None

2a. SECURITY CLASSIFICATION AUTHORITY

N/A
3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-96-TR-025

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESC-TR-96-025

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7b. ADDRESS (city, state, and zip code)

HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/AXS

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-95-C-0003

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.

N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A

11. TITLE (Include Security Classification)

Recommended Best Industrial Practice for Software Architecture Evaluation

12. PERSONAL AUTHOR(S)
Gregory Abowd, Len Bass, Paul Clements, Rick Kazman, Linda Northrop, Amy Zaremski

13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

January 13,1997
15. PAGE COUNT

43

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

. software architecture, software architecture analysis, software architecture HELD GROUP SUB. GR.

evaluation, indust rial best practice

19. ABSTRACT (continue on reverse if necessary and identify by block number)

Architectural decisions have a great impact on the consequent quality of software systems. As a
result, it is important to evaluate how a software architecture meets its quality demands. Though
much focus has been placed on modeling and describing the software architecture as a design arti-
fact, we found that relatively little is known about the current experience with software architecture
evaluation.

This report details the results of two workshops on software architecture evaluation, held at the Soft-
ware Engineering Institute (SEI) on November 9-10,1995 and May 9-10,1996. The purpose of the

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED (SAMEASRPTQ DTIC USERS |

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF
22b. TELEPHONE NUMBER (include area code) 2

(412)268-7631 [
2c. OFFICE SYMBOL

ESC/AXS (SEI)

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

ABSTRACT — continued from page one, block 19

workshops was to determine the state of industrial practice in the evaluation of software archi-
tectures with respect to a set of desired quality attributes, and to uncover recommendations for
best practices. In this report, we summarize the findings of the two workshops, define a set of
dimensions to characterize various software architecture evaluation techniques, and make con-
crete recommendations for implementing architecture evaluation practices.

